
Rank Position Forecasting in Car Racing
Bo Peng1 Jiayu Li2 Selahattin Akkas2

Takuya Araki3 Ohno Yoshiyuki3 Judy Qiu1
1,2Indiana University

3NEC Corporation Japan
1{pengb, xqiu}@indiana.edu 2{ jl145, sakkas}@iu.edu

3{takuya araki, ohno.yoshiyuki}@nec.com

Abstract—Rank position forecasting in car racing is a challeng-
ing problem when using a Deep Learning-based model over time-
series data. It is featured with highly complex global dependency
among the racing cars, with uncertainty resulted from existing
and external factors; and it is also a problem with data scarcity.
Existing methods, including statistical models, machine learning
regression models, and several state-of-the-art deep forecasting
models all perform not well on this problem. By an elaborate
analysis of pit stop events, we find it critical to decompose the
cause-and-effect relationship and model the rank position and pit
stop events separately. In choosing a sub-model from different
neural network models, we find the model with weak assumptions
on the global dependency structure performs the best. Based on
these observations, we propose RankNet, a combination of the
encoder-decoder network and a separate Multilayer Perception
network that is capable of delivering probabilistic forecasting to
model the pit stop events and rank position in car racing. Further
with the help of feature optimizations, RankNet demonstrates
a significant performance improvement, where MAE improves
19% in two laps forecasting task and 7% in the stint forecasting
task over the best baseline and is also more stable when adapting
to unseen new data. Details of the model optimizations and
performance profiling are presented. It is promising to provide
useful interactions of neural networks in forecasting racing cars
and shine a light on solutions to similar challenging issues in
general forecasting problems.

I. INTRODUCTION

Forecasting the rank position in motorsports is a challenging
problem. First, the status of a race is highly dynamic. It is a
collective effect of many factors, including the skills of the
drivers, the configuration of the cars, the interaction among the
racing cars, the dynamics of the racing strategies and events
out of control, such as mechanical failures and unfortunate
crashes that are hardly avoidable during the high-speed racing.
Uncertainty is a significant challenge for forecasting the future
accurately. A successful model needs to capture the complex
dependencies and express uncertainty. Secondly, motorsports
forecasting has a data scarcity challenge where available real-
time data are limited because only one trajectory for each
car can be observed during the race. Moreover, some factors,
such as pit stop and car crash, make huge impacts on the
racing dynamics but are irregular and rare, which appear less
than 5% in available data. These so-called ”extreme events”
[17] are a critical part of a model as we will show in our
RankNet design. Deep learning-based forecasting has observed
its success across domains in recent years. However, we find
that the state-of-the-art models in this field are simulation
methods or machine learning methods, all highly rely on the

domain knowledge [1], [10], [14], [26]. Simply applying a
deep learning model alone does not deliver better forecasting.

On the one hand, deep learning forecasting models have
advantages over traditional statistical and machine learning
methods in their powerful representation learning capability.
They can alleviate the high dependency on domain knowledge
as well as costly feature engineering. Recent representative
deep forecasting models, such as DeepAR(2017) [22],Deep-
State(2018) [21], DeepFactor(2019) [29] and N-BEATS(2020)
[19] are all able to capture local data dependency within
a single time-series and global dependency among multiple
time-series. On the other hand, deep forecasting models share
common disadvantages, such as sample inefficiency that the
model requires more training data to train and the difficulty
in modeling causal dependency. Furthermore, different as-
sumptions behind each model may limit its applicability to
a specific problem. For example, DeepState is a state-space
model that assumes a linear-Gaussian transition structure and
assumes the time-series are conditional independent of the
model parameters. DeepFactor, as a factor model, requires the
data to be exchangeable time series and to model the global
dependency explicitly by line combination of global factors.
Since the rank forecasting problem is challenging due to its
high dynamics and global dependence among the cars, models
with strong global dependency structure assumptions do not
perform well.

In this paper, IndyCar [3] presents a challenging time-
series use case from the real-time racing events. The main
contributions of the paper are as follows:

• We investigate how to build a deep forecasting model
that tackles the dynamic global dependency issues in the
rank position forecasting problem. The central idea is
to build sub-models by model decomposition based on
cause-and-effect factors of rank position. In this way, we
can train the model on extreme events more efficiently
and effectively.

• Different choices of deep learning models are explored
and sub-models are proposed in our final solution
RankNet, a car racing forecasting model combined with
a deep encoder-decoder network, a probabilistic multi-
layer perceptron(MLP) network, and domain knowledge-
based optimizations. We’ve made this work and the
Ranknet 1 model available as open source.

1https://github.com/DSC-SPIDAL/rankpredictor

• We conduct extensive experiments showing that RankNet
improves forecasting performance significantly compared
with statistical, machine learning, and deep learning base-
lines where MAE improvements more than 7% consis-
tently.

II. PROBLEM STATEMENT

A. Background

Indy500 is the premier racing event of the IndyCar series.
Each year, 33 cars compete on a 2.5-mile oval track for 200
laps. The track is split into several sections or timeline and
SF/SFP indicates the start and finish line on the track or the pit
lane respectively. A local communication network broadcasts
race information to all the teams, following a general data
exchange protocol [3].

Pit Stops

ResourceConstraints
Fuel level
Tire

 Anomaly Events
Safety cars
Yellow flags
Car accident

 Strategies
Current lap & rank
Team information
Historical data

Related Features

Time & Lap of the last pitstop

Track Status(normal/caution)

Placing
Cars out of the race

Time Behind Leader

...

Lap Time

Total Pit Count

Time & Lap of the last pitstop
Lap Time

Time & Lap of the last pitstop
Lap Time

Lap Status(normal/pit)

Historical Stint distance

Fig. 1: Main factors affecting Pit stop

Rank position is the order of the cars crossing SF/SFP.
In motorsports, a pit stop is a pause for refueling, new tires,
repairs, mechanical adjustments, a driver change, a penalty, or
any combination of them [6]. Stint refers to the gap between
pitstops, or the gap between a pitstop and the start or end
of the race. Unexpected events happen in a race, including
mechanical failures or a crash. Depending on the severity level
of the event, sometimes it leads to a dangerous situation for
other cars to continue the racing with high speed on the track.
In these cases, a full course yellow flag rises to indicate the
race entering a caution laps mode, in which all the cars slow
down and follow a safety car and can not overtake until another
green flag raised.

B. Rank position forecasting problem and challenges

0 25 50 75 100 125 150 175 200
0

10

Ra
nk

0 25 50 75 100 125 150 175 200
Lap

50

100

La
pT

im
e(

s) PitStop
NormalLap
CautionLap

Fig. 2: Data examples of Indy500-2018. Rank and LapTime sequence
of car12, the final winner.

The task of rank position forecasting is to predict a car’s
future rank position given the race’s observed history. Fig.2

shows a typical Rank and LapT ime sequence. Both of them
are stable most of the time, indicating the race’s predictable
aspects that the driver’s performance is stable. However, they
both show abrupt changes when the racing status, including
LapStatus and TrackStatus, changes. Pit stop slows down
the car and leads to a loss of rank position temporarily in the
next few laps. Caution laps also slow down the car but do not
affect the rank position much.

Fig.2 demonstrates the highly dynamic characteristics of this
problem. The data sequence contains different phases, affected
by the racing status. As for pit stop decisions, a team will
have an initial plan for pit stops before the race, and the team
coach will adjust it dynamically according to the status of
the race. ’Random’ events, such as mechanical failures and
crashes, also impact the decision. A few laps of adjustment to
the pit stop strategy may change the whole course of the race.
However, when assuming the pit stop on each lap is a random
variable, only one instance of its distribution is observed in one
race. Therefore, even the cause-effect relationship between pit
stop and rank position is known, forecasting of rank is still
challenging due to the uncertainty in pit stop events. Figure3
illustrates that the existing statistical, machine learning, and
deep learning models give poor rank forecasting performance.

C. Pitstop analysis

Pit stops play a critical role in the uncertainty of the rank
position forecasting. Previous studies [11], [14], [26] did some
preliminary analysis of the factors that affect pit stop. In this
section, we study the causes of pit stops based on the data of
Indy500, which helps us select the main features to build the
deep learning model. As in Fig. 1, we divide the causes of
pit stop into three categories: resource constraints, anomaly
events, and race strategies.

a) Resource constraints: The distance between the two
pit stops is limited by the car’s fuel tank volume and its tires.
As in Fig. 4(a), no car runs more than 50 laps before entering
the pit stop.

b) Anomaly events: Anomaly events are usually caused
by mechanical failure or car accidents. When a severe accident
occurs, TrackStatus will change to Yellow Flag, which will
change the pit stop strategy. In the Indy500 dataset, the number
of the normal pit and caution pit are close, 777 and 763,
respectively. These two types of pit stops show significant
differences. In Fig. 4(a), the normal pit is a bell curve, and
the caution pit scatters more evenly; In Fig. 4(b), we observe
three linear sections in the CDF curve of the lap distance of
the normal pit. The lower section of short distance pit may
be caused mainly by unexpected reasons, such as mechanical
failures, and keeps a low probability of less than 10%. The
upper part of the long-distance pit occurs when many caution
laps happen, in which case the cars run at a reduced speed
that significantly reduces tire wear and fuel burn for a distance
traveled. From these observations, modeling all pit stops from
raw data would be difficult, and modeling the normal pit data
with the short distance section removed should be more stable.

26 31 36 41 46 51 56
Lap

0

10

20
Ra

nk

SVR
observed
forecast-median
forecast-90.0%

26 31 36 41 46 51 56
Lap

0

10

20

Ra
nk

RF
observed
forecast-median
forecast-90.0%

26 31 36 41 46 51 56
Lap

0

10

20

Ra
nk

ARIMA
observed
forecast-median
forecast-90.0%

26 31 36 41 46 51 56
Lap

0

10

20

Ra
nk

DeepAR
observed
forecast-median
forecast-90.0%

Fig. 3: Two laps forecasting results around pit stop lap 34 for car12 in Indy500-2019. (a)(b) Machine learning regression models. SVM
learns a model very close to a two laps delay. RandomForest fails to predict the change around pit stop. (c) Statistical methods. ARIMA
provides uncertainty predictions but lower performance, with difficulty to model the highly dynamics. (d) DeepAR, a state-of-the-art LSTM
encoder-decoder model with uncertainty forecasting, also performs not well around pit stop.

0 20 40
Distance

0.00

0.05

0.10

0.15

Fr
eq

ue
nc

e

(a)Stint Distance Distribution
normal pit
caution pit

0 20 40
Distance

0.0

0.5

1.0

CD
F

(b)Stint Distance CDF

0 100 200
Lap

0.00

0.02

0.04

0.06

Fr
eq

ue
nc

e

(c)PitStop Distribtuion
normal pit
caution pit

0 10 20 30
Rank Changes

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

e

(d)Rank Changes Distribution
normal pit
caution pit

Fig. 4: Statistics and analysis of pit stop. Stint refers to laps between two consecutive pit stops. Pit stops occurred on caution lap denoted as
Caution Pit, otherwise Normal pit. (a)(b) Distribution of stint distance. Normal pits and caution pits are different. (c) Considerable uncertainty
of where pit stops occur. (d) Caution pits have much fewer impacts on rank position compared with normal pits.

c) Race strategies: In real competitions, the team coach
also needs to make pit stop decisions considering the rivals’
strategy and the collaboration among the team members,
which are difficult to summarize with simple rules. To better
understand race strategy, we need to combine the ranking,
team information, and historical data of past races to train
the model.

III. METHODOLOGY

A. Modeling uncertainty in high dynamic time-series
We explore the rank position forecasting as a sequence-

to-sequence modeling problem. We use zi,L to denote the
value of sequence i at lap L, xi,L to represent the co-
variate that is assumed to be known at any given lap.
An encoder-decoder architecture is employed to map a
input sequence [zi,1, zi,2, . . . zi,L0

] to the output sequence
[zi,L0+1 . . . zi,L0+k]. Here L0 represents the length of the input
sequence, and k represents the prediction length. Note that lap
number L is relative, i.e. L = 1 corresponds the beginning of
the input, not necessarily the first lap of the actual race.

We follow the idea proposed in [22] to deliver probabilistic
forecasting to model the uncertainty. Instead of predicting the
value of the target variable in the output sequence directly,
a neural network predicts all parameters θ of a predefined
probability distribution p(z|θ) by its output h.

For example, to model a Gaussian distribution for real-value
data, the parameter θ = (µ, σ) can be calculated as: µ(hi,L) =
WT
µ hi,L + bµ, σ(hi,L) = log(1 + exp(WT

σ hi,L + bσ)). The
final output zi,L is then sampled from this distribution.

Our goal is to model the conditional distribution

P (zi,L0+1:L0+k|zi,1:L0 ,xi,1:L0+k)

We assume that our model distribution
QΘ(zi,L0+1:L0+k|zi,1:L0 ,xi,1:L0+k) consists of a product of
likelihood factors

QΘ(zi,L0+1:L0+k|zi,1:L0
,xi,1:L0+k)

=

L0+k∏
L=L0+1

QΘ(zi,L|zi,1:L−1,xi,1:L0+k)

=

L0+k∏
L=L0+1

p(zi,L|θ(hi,L,Θ))

(1)

parametrized by the output hi,L of an autoregressive recur-
rent network

hi,L = h(hi,L−1, zi,L−1,xi,L,Θ)

where h is a core function that is implemented by a deep
neural network (e.g. LSTM or Transformer) parametrized by
Θ.

The encoder-decoder architecture provides an advantage
by supporting the incorporation of covariates known in the
forecasting period. For example, in sales demand forecasting,
holidays are known to be critical factors in achieving good
predictions. In our case, caution laps and pit stops are essential
factors to the rank position. But, different from the holidays,
these variables in the future are unknown at the time of
forecasting, leading to the need to decompose the cause effects
in building the model.

B. Decomposition and extreme events modeling

Changes of race status, including pit stops and caution
laps, cause the phase changes of the rank position sequence.

TABLE I: Summary of input data used in RankNet model

Variable Feature Domain Description

Race status Xi

TrackStatus(i, L) T/F Status of each lap for a car i, normal lap or caution lap.
LapStatus(i, L) T/F Whether lap L is a pit stop lap or not for car i
CautionLaps(i, L) N At Lap L, the count of caution laps since the last pit lap of car i.
PitAge(i, L) N At lap L, the count of laps after the previous pit stop of car i.

Rank Zi

Rank(i, L) N There are Rank(i, L) cars that completed lap L before car i
LapT ime(i, L) R+ Time used by car i to complete lap L.
T imeBehindLeader(i, L) R+ Time behind the leader of car i in lap L.

For a straightforward solution to address this dependency
issue, we model the race status and rank position together
and jointly train the model in the encoder-decoder network.
In this case, target variable zi,t is a multivariate vector
[Rank, LapStatus, TrackStatus].

However, this method fails in practice due to data sparsity.
The changes of race status are rare events, and targets of rare
events require different complexity of models. For example, on
average, a car goes to pit stops six times in a race. Therefore,
LapStatus, a binary vector with a length equals to 200, contains
only six ones, 3% effect data. TrackStatus, indicating the crash
events, is even harder to predict.

Pit ModelHistorical racestatus Predicted racestatus

Predicted
Rank

Input Data

Xi,2 Xi,L0

Xi,L0+1 Xi,L0+2

Zi,1 Zi,2 ... Zi,L0

Rank & Racestatus

Zi,L0+1 Zi,L0+2

Xi,1 Xi,2 ... Xi,L0

Encoder length

Decoder length

Encoder Decoder

Rank ModelZi,L0-1
Xi,3 ...

hL0

(a) Forecasting process: History data first feed into PitModel to get RaceStatus
in the future, then feed into RankModel to get Rank forecasting. The output
of the models are samples drawn from the learned distribution. Features
contained in the vectors Xi and Zi are shown in Table I.

LSTM or
Transformer

p(Zi,2|θi,2)

LSTM or
Transformer

p(Zi,L0|θi,L0)

Zi,2

Encoder

Zi,L0

LSTM or
Transformer

p(Zi,L0+1|θi,L0+1)

LSTM or
Transformer

p(Zi,L0+2|θi,L0+2)

Zi,L0+1 Zi,L0+2

Zi,1 Xi,2 Zi,L0-1 Xi,L0

Decoder

Zi,L0 Xi,L0+1 Zi,L0+1 Xi,L0+2

...

Dense Dense DenseDense
hi,2 hi,L0

...

hi,L0+1 hi,L0+2

Observed Predicted Sampling P(Z|θ)Zi Xi

Rank Race status
Recursive Input

Stacked
Dense

Dense

Xi,L0+1:L0+k

Xi,1:L0

θ'

Pit Model Rank Model

(b) PitModel is a MLP predicting next pit stop lap given features of RaceStatus
history. RankModel is stacked multi-layers LSTM encoder-decoder predicting
rank for next prediction len laps, given features of historical Rank and
RaceStatus, and future RaceStatus predicted by PitModel.

Fig. 5: RankNet architecture

We propose a RankNet model to decompose the cause-
effect of race status and rank position, as shown in Fig. 5(a),
is composed of two sub-models. First, a PitModel forecasts
the future RaceStatus, in which LapStatus is predicted and
TrackStatus is set to zeros assuming no caution laps in

the future. Then the RankModel forecasts the future Rank
sequence with these predicted race status inputs.

C. RankNet architecture

The details of RankNet is shown in our neural network
architecture for the two sub-models in Fig. 5(b). PitModel
adopts a simple multilayer perceptron network(MLP), denoted
as Stacked Dense layer in Fig. 5(b). RankModel adopts
an encoder-decoder architecture, which is widely used in
sequence modeling. Both encoder and decoder is a deep
neural network capable of modeling long-range context de-
pendencies, such as the classical multi-layer recurrent neural
network(RNN) with LSTM cells [15], or more recently suc-
cessful Transformer [27]. A dense layer converts the output
of the encoder and decoder into the parameter of a predefined
distribution.

RaceStatus is the most important feature in covariates Xt.
TrackStatus indicates whether the current lap is a caution
lap, in which the car follows a safety car at a controlled speed.
LapStatus indicates whether the current lap is a pit stop lap,
in which the car cross SF/SFP in the pit lane. Some other
static features can also be added to the input. For example,
DriverId represents the skill level of the driver.

Transformations are applied to these basic features to extract
new features. Embedding for categorical DriverId is utilized.
Accumulation sum transforms the binary status features into
’age’ features, generating features such as CautionLaps and
PitAge. Table I summarizes the definition of these features.
Due to the data-sparse issue for pit stop events, instead of
sequences input and output, PitModel uses CautionLaps and
PitAge as input for better data efficiency and output a scalar
of the lap number of the next pit stop.

A rank position forecasting network is trained with a fixed
prediction length. To deliver a variable-length prediction, e.g.,
in predicting the rank positions between two pit stops, we ap-
ply fixed-length forecasting recursively by using the previous
output as input for the next prediction. For the probabilistic
output, we take 100 samples for each forecasting. And the final
rank positions of the cars are calculated by sorting the sampled
outputs. The training and prediction process of RankNet is
shown in Algorithm 1 and Algorithm 2.

IV. EXPERIMENTS

A. Dataset

We evaluate our model on the car racing data of IndyCar
series [2]. Due to the data scarcity in car racing, we have
to incorporate more data to learn a stable model. Using the

Algorithm 1: RankNet Training in minibatch
input : A minibatch (batch size = B) of time serises

{zi,1:L0+k}i=1,...B and associated covariates
{xi,1:L0+k}i=1,...B .

1 for i = 1 . . . B and L = L0 + 1 . . . L0 + k do
2 Calculate the current state

hi,L = h(hi,L−1, zi,L−1,xi,L) through the neural
network.

3 Calculate the parameter θi,L = θ(hi,L) of the predefined
distribution p(z|θ).

4 The loss is obtained by log-likelihood:

L =

B∑
i=1

L0+k∑
L=L0+1

log p(zi,L|θ(hi,L)) (2)

5 Apply the ADAM optimizer to update the weights of the
neural network by maximizing the log-likelihood L.

Algorithm 2: Forecasting with RankNet
input : {xi,1:L0}, {zi,1:L0} , model trained with

prediction length k, forecasting start position L0,
end position LP .

// Forecasting pit stops using PitModel.
1 Calculate xL0+1:LP ; set future TrackStatus to zero.
2 while L0 < LP do

// Rank Model
3 Input the historical data at lap L ≤ L0 into the

RankModel to obtain the initial state hi,L0 .
4 for L = L0, ...L0 + k − 1 do
5 Input {zi,L,xi,L+1,hi,L} into the RankModel to

get θi,L+1

6 Random sampling z̃i,L+1 ∼ p(·|θi,L+1).
7 Update zi,L+1 with z̃i,L+1

8 L0+ = k

9 return z̃i,LP

historical data that is a long time ago can be ineffective
because many factors change along the time, including the
drivers’ skills, configurations of the cars, and even the race
rules. The same year data of other races are ’similar’ in the
status of the drivers, cars, and rules, but different shapes and
lengths of the track lead to different racing dynamics.

In this paper, we select races of Motor Speedway after 2013
with at least 5 years of data each, and after removing corrupted
data, get a dataset of 25 races from four events, shown in
Table. II. Fig. 6 shows the data distribution by two statistics
for this dataset. Among all the events, Indy500 is the most
dynamic one, which has both the largest PitLapsRatio and
RankChangesRatio; Iowa is the least.

We train models separately for each event. Races of the first
five years are used as the training dataset, and the remains
are used as testing data, which are labeled in Fig. 6. Since
Pocono has only five years of data in total, its training set uses
four of them. First, we start from Indy500 and use Indy500-
2018 as a validation set. Then we investigate the generalization
capability of the model on data of the other events.

TABLE II: Summary of the data sets.

Event Year Track
Length

Track
Shape

Total
Laps #Records Usage

Indy500 2013-2017 2.5 Oval 200 6600 Training
Indy500 2018 2.5 Oval 200 6600 Validation
Indy500 2019 2.5 Oval 200 6600 Test

Iowa 2013,
2015-2018 0.894 Oval 250 6000 Training

Iowa 2019 0.894 Oval 300 7200 Test

Pocono 2013,
2015-2017 2.5 Triangle 160 3840 Training

Pocono 2018 2.5 Triangle 200 4800 Test
Texas 2013-2017 1.455 Oval 228 5472 Training
Texas 2018-2019 1.455 Oval 248 5704 Test

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Pit Laps Ratio

0.1

0.2

0.3

Ra
nk

 C
ha

ng
es

 R
at

io

2018
2019

201820192019
2018

Indy500
Texas
Iowa
Pocono

Fig. 6: Data distribution of Indycar Dataset. PitLapsRatio is the pit
stop laps # divided the total laps #. RankChangesRatio refers to the
ratio of laps with rank position changes between consecutive laps.

B. Baselines and implementation

As far as we know, there is no open-source model that
forecasts rank position in car racing and no related work on
the IndyCar series.

First, we have a naive baseline which assumes that the
rank positions will not change in the future, denoted as
CurRank. Secondly, We implement machine learning regres-
sion models as baselines that follow the ideas in [25] which
forecast changes of rank position between two consecutive
pit stops, including RandomForest, SVM, and XGBoost that
do pointwise forecast. Thirdly, we test with four latest deep
forecasting models as the choice of RankModel, including
DeepAR(2017) [22], DeepState(2018) [21], DeepFactor(2019)
[29], N-BEATS(2020) [19].

PitModel has three implementations. For example for
RankNet, we have 1) RankNet-Joint is the model that trains
the target with pit stop jointly without decomposition; 2)
RankNet-Oracle is the model with ground truth TrackStatus
and LapStatus as covariates input. It represents the best
performance obtainable from the model, given the caution and
pit stop information for a race; 3) RankNet-MLP employs
model decomposition with a separate PitModel. Table. IV
summarizes the features of all the models.

We build our model RankNet with the Gluonts framework
[8]. RankNet is based on the DeepAR implementation in Glu-
onts, shares the same features, including sharing parameters
between encoder and decoder, both implemented as stacking
of multiple LSTM layers.

C. Model optimization

For machine learning baselines, we tune the hyper-
parameters by grid search. For deep models, we tune the

26 31 36 41 46 51 56
Lap

10

20

30
Ra

nk
observed
CurRank
forecast-median
forecast-90.0%

(a)RankNet-Oracle

26 31 36 41 46 51 56
Lap

10

20

30

(b)Step 1. AddWeights

26 31 36 41 46 51 56
Lap

10

20

30

(c)Step 2.ContextLen60

26 31 36 41 46 51 56
Lap

10

20

30

(d)Step 3. AddContextFeatures

26 31 36 41 46 51 56
Lap

10

20

30 observed
CurRank
forecast-median
forecast-90.0%

(e)Step 4. AddShiftFeatures

Fig. 7: Steps of RankNet model optimizations on two laps forecasting for Car13 Indy500-2018.(a)Basic RankNet model trained with Oracle
race status features and context length=40. (b)Adding larger weights to the loss for instances with rank changes, set the optimal weight
to 9. (c)Tuning on parameter context length, set optimal length to 60. (d)Adding context features, including LeaderPitCount: # of leading
cars(based on the rank position at lap A-2) that go to pit stop at lap A; TotalPitCount:# of cars that go to pit stop at lap A. (e)Adding shift
features, including Shift RaceStatus: lapstatus and trackstatus of the future at lap A+2; Shift TotalPitCount:# of cars that go to pit stop at
lap A+2.

parameter of encoder length, loss weight, and use the default
value of other hyper-parameters in the GluonTs implemen-
tation, as in Table. III. The model is trained by ADAM
optimizer with an early stopping mechanism that decays the
learning rate when the loss does not improve for 10 epochs
until reaching a minimum value. Fig. 7 shows the process
of further model optimization, starting from a basic RankNet
model, optimizations are added step by step and tuned on the
validation dataset.

TABLE III: Dataset statistics and model parameters

Parameter Value
of time-series 227(Indy500), 619(All)
of training examples 32K(Indy500), 117K(All)
Granularity Lap
Domain R+
Encoder length [20,40,60,80,100]
Decoder length k 2
Loss weight [1-10]
Batch size B 32
Optimizer ADAM
Learning rate 1e-3
LR Decay Factor 0.5
of lstm layers 2
of lstm nodes 40
Training time 2h

TABLE IV: Features of the rank position forecasting models.

Name RankModel PitModel Optimization
CurRank
ARIMA ARIMA
RandomForest RandomForest custom features

[25]SVM SVM
XGBoost XGBoost
DeepAR DeepAR
DeepState DeepState
DeepFactor DeepFactor
N-BEATS N-BEATS
DeepAR-Oracle DeepAR Oracle raw race status

features
(Table.I)

DeepState-Oracle DeepState Oracle
DeepFactor-Oracle DeepFactor Oracle

N-BEATS-Oracle N-BEATS Oracle not support co-
variates

RankNet-Joint DeepAR Joint
RankNet-Oracle DeepAR Oracle loss weight +

new race status
features (Fig.7)

RankNet-MLP DeepAR MLP

D. Evaluation

RankNet is a single model that can forecast both short-term
rank position and long-term change of rank position between
pitstops. First, we use mean absolute error(MAE) to evaluate
all the sequences’ average forecasting accuracy since they
have the same units. Secondly, we evaluate the accuracy of
the leader’s correct predictions, denoted as Top1Acc, and the
accuracy of correct predictions of the sign of the change which
indicates whether a car achieves a better rank position or not,
denoted as SignAcc.

Thirdly, a quantile based error metric ρ-risk [23] is used
to evaluate the probabilistic forecasting performance. When a
set of samples output by a model, the quantile ρ value of the
samples is obtained, denoted as Ẑρ, then ρ-risk is defined as
2(Ẑρ −Z)((Z < Ẑρ)− ρ), normalized by

∑
Zi. It quantifies

the accuracy of a quantile ρ of the forecasting distribution.
The values of Top1Acc and SignAcc are the larger, the better,
and the other metrics are less the better.

E. Short-term rank position forecasting

Table V shows the evaluation results of two laps rank po-
sition forecasting. CurRank demonstrates good performance.
73% leader prediction correct and 1.16 mean absolute error on
Indy500-2019 indicates that the rank position does not change
much within two laps.

DeepAR is a powerful model but fails to exceed CurRank,
which reflects the difficulty of this task that the patterns
of the rank position variations are not easy to learn from
history. When adding an oracle PitModel, DeepAR-Oracle
shows a 28% improvement in MAE over CurRank. By adding
further optimizations, RankNet-Oracle, which adopts the same
RankModel network as DeepAR, achieves significantly better
performance than CurRank, with 23% better in Top1Acc and
51% better in MAE. These results demonstrate the effective-
ness of model decomposition and domain knowledge-based
optimizations.

Comparing the performance of four state-of-the-art deep
forecasting models as the choice of RankModel, we find
DeepAR and N-BEATS obtains similar performance. How-
ever, N-BEATS is limited in supporting covariates, which
prevents its adoption. DeepState and DeepFactor demonstrate
inferior forecasting performance on this problem. We speculate

26 31 36 41 46 51 56
Lap

0

10

20
Ra

nk

Transformer-Oracle
observed
forecast-median
forecast-90.0%

26 31 36 41 46 51 56
Lap

0

10

20

Ra
nk

Transformer-MLP
observed
forecast-median
forecast-90.0%

26 31 36 41 46 51 56
Lap

0

10

20

Ra
nk

RankNet-Oracle
observed
forecast-median
forecast-90.0%

26 31 36 41 46 51 56
Lap

0

10

20

Ra
nk

RankNet-MLP
observed
forecast-median
forecast-90.0%

Fig. 8: RankNet forecasting results of two laps in the future for car12 in Indy500-2019.

TABLE V: Short-term rank position forecasting(prediction leghth=2) of Indy500-2019

All Laps Normal Laps PitStop Covered Laps
Model Top1Acc MAE 50-Risk 90-Risk Top1Acc MAE 50-Risk 90-Risk Top1Acc MAE 50-Risk 90-Risk
CurRank 0.73 1.16 0.080 0.080 0.94 0.13 0.009 0.009 0.55 2.09 0.144 0.144
ARIMA 0.54 1.45 0.110 0.105 0.70 0.47 0.047 0.042 0.40 2.32 0.166 0.162
RandomForest 0.62 1.31 0.091 0.091 0.78 0.39 0.027 0.027 0.47 2.14 0.147 0.147
SVM 0.73 1.16 0.080 0.080 0.94 0.13 0.009 0.009 0.55 2.09 0.144 0.144
XGBoost (2014) 0.64 1.25 0.086 0.086 0.76 0.27 0.019 0.019 0.54 2.12 0.146 0.146
DeepAR (2017) 0.73 1.22 0.086 0.085 0.93 0.21 0.018 0.017 0.55 2.12 0.147 0.145
DeepState (2018) 0.56 1.95 0.137 0.133 0.73 0.85 0.062 0.059 0.41 2.93 0.203 0.199
DeepFactor (2019) 0.01 10.44 0.684 0.683 0.00 10.79 0.714 0.712 0.02 10.13 0.658 0.657
N-BEATS (2020) 0.70 1.21 0.083 0.083 0.87 0.19 0.013 0.013 0.55 2.12 0.146 0.146
DeepAR-Oracle 0.88 0.84 0.063 0.060 0.93 0.20 0.016 0.015 0.84 1.42 0.105 0.099
DeepState-Oracle 0.73 1.38 0.096 0.093 0.85 0.72 0.051 0.050 0.63 1.98 0.136 0.133
DeepFactor-Oracle 0.01 8.30 0.523 0.521 0.01 8.56 0.542 0.541 0.01 8.06 0.506 0.504
RankNet-Oracle 0.90 0.57 0.045 0.040 0.94 0.20 0.021 0.018 0.87 0.90 0.067 0.061
RankNet-Joint 0.64 1.74 0.153 0.144 0.78 0.82 0.096 0.089 0.52 2.56 0.203 0.194
RankNet-MLP 0.79 0.94 0.067 0.046 0.94 0.21 0.022 0.018 0.65 1.59 0.107 0.072

that strong model assumptions on the global dependency
structure prevent a model’s success in this highly dynamic
forecasting problem. DeepState assumes a linear-Gaussian
transition structure, and DeepFactor requires exchangeable
time series, which may not hold in the racing data. On
the contrary, N-BEATS and DeepAR learn similarity among
time series by sharing the same network in training without
introducing strong structure assumptions. And also this is
a data sparse problem, which prefers the model that can
provide forecasts for items that have little history available,
where DeepAR has advantages [22]. These results demonstrate
the effectiveness of the encoder-decoder architecture for this
problem.

Other machine learning models and RankNet-Joint all failed
to get better accuracy than CurRank. RankNet-MLP, our
proposed model, is not as good as RankNet-Oracle, but still
able to exceed CurRank by 7% in Top1Acc and 19% in MAE.
It also achieves more than 20% improvement of accuracy
on 90-risk when probabilistic forecasting gets considered.
Evaluation results on PitStop Covered Laps, where pit stop
occurs at least once in one lap distance, show RankNet-MLP
and RankNet-Oracle’s advantages come from their capability
of better forecasting in these extreme events areas. A visual
comparison of RankNet over the baselines are demonstrated
in Fig.8 and Fig.3.

F. Stint rank position forecasting

Table VI shows the results of the task of forecasting the rank
position changes between consecutive pit stops. CurRank can
not predict changes, thus gets the worst performance. Among

TABLE VI: Rank position changes forecasting between pit stops

Model SignAcc MAE 50-Risk 90-Risk
CurRank 0.15 4.33 0.280 0.262
RandomForest 0.51 4.31 0.277 0.276
SVM 0.51 4.22 0.270 0.249
XGBoost (2014) 0.45 4.86 0.313 0.304
DeepAR (2017) 0.37 4.08 0.265 0.268
DeepState (2018) 0.51 4.88 0.317 0.397
DeepFactor (2019) 0.54 9.51 0.622 0.668
N-BEATS (2020) 0.47 4.29 0.274 0.290
RankNet-Joint 0.60 5.83 0.388 0.486
RankNet-MLP 0.65 3.79 0.245 0.169
RankNet-Oracle 0.67 3.41 0.229 0.203

the three machine learning models, SVM shows the best per-
formance. RankNet-Oracle demonstrates its advantages over
all the machine learning models, indicating that once the
pit stop information is known, long term forecasting through
RankNet is more effective. The performance of RankNet-MLP
obtains significantly better accuracy and improves between
9% to 30% on the four metrics over SVM. For the four
deep learning models, only DeepAR obtains better MAE
performance over SVM. But RankNet-MLP is still achieving
7% improvements over DeepAR. Moreover, it forecasts future
pit stops and thus different race status possibilities, which are
not supported by the other baselines. RankNet is promising to
be a tool to investigate and optimize the pit stop strategy.

G. RankNet with Transformer

In this experiment, we replace LSTM-based RNN with the
Transformer implementation from the GluonTs library, which
has multi-head attention(8 heads) and the dimension of the

TABLE VII: Two laps forecasting task on other races. MAE improvements is compared over CurRank on PitStop covered laps.

MAE Improvement(Train by Indy500) MAE Improvement(Train by same event)
Dataset RankNet Random RankNet Transformer RankNet Random RankNet Transformer

-MLP Forest -Joint -MLP -MLP Forest -Joint -MLP
Indy500-2019 0.24 -0.02 -0.08 0.12 0.24 -0.02 -0.08 0.12
Texas-2018 0.11 -2.13 -0.22 0.02 0.15 -0.10 -0.11 0.07
Texas-2019 0.01 -1.63 -0.29 -0.15 0.10 -0.13 -0.15 -0.02
Pocono-2018 0.09 -2.25 -0.02 -0.17 0.06 -1.51 -0.09 0.02
Iowa-2019 0.09 -1.03 -0.09 0.03 0.09 0.09 -0.07 0.05

transformer network is 32. As in Table. VII, LSTM based
RankNet demonstrates consistently a slightly better perfor-
mance over Transformer based implementation. We speculate
that this is due to the small data size in our problem which
limits the Transformer to obtain better performance.

H. Generalization to new races

In the left column of Table.VII, the models are trained by
the Indy500 training set, then tested on other race data. In
the right column, the models are trained by the training set
from the same event. RandomForest, as a representative of the
machine learning methods, has its performance drops badly
in the left column, indicating its incapability of adapting to
the new data. On the contrary, RankNet-MLP obtains decent
performance even when testing on unseen races. It shows the
advantages of RankNet model on generalizing to race data
from the different data distribution.

Pocono-2018 is a special case where RankNet-MLP trained
by Pocono is worse than the model trained by Indy500. As
in Fig. 6, Pocono-2018 has a small RankChangesRatio where
CurRank delivers good performance; moreover, Pocono-2018
has the largest RankChangesRatio distance to other races from
the same event, which makes it harder in forecasting with the
trained model by the other races in Pocono.

I. Evaluation of RankNet Model’s Training Efficiency

When considering the deployment of RankNet in car rac-
ing events, continuous learning by incorporating racing data
streams, and updating the model in real-time would be critical
in rank position forecasting. In this section, we study the
efficiency aspects of model training to answer the following
questions:

1) What challenges exist to accelerate the training process?
2) Which device is preferred to this need?

We re-implement RankNet with Tensorflow that supports
many kinds of devices as an accelerator, and conducted
performance evaluation of the model training with hardware
in Table VIII.

TABLE VIII: Specification of hardware used in the evaluation.

CPU GPU VE
Model Xeon Gold 6226 V100S-PCIe Type 10BE
of sockets 2 1 1
of cores 12 x 2 5120 8
Memory B/W 131.13 GB/s x 2 1134 GB/s 1350 GB/s
Peak perf. (float) 1.996 TF x 2 16.4 TF 4.32 TF
Host processor - Xeon Gold 6226

We run experiments on SX-Aurora TSUBASA [30] as a
novel vector engine architecture. It is composed of an x86
processor and a PCI card called Vector Engine (VE). VE
contains a vector processor; the length of the vector register is
256 elements, which is much larger than SIMD instructions of
general purpose processors like x86. Though VE can execute
a whole program, TensorFlow for SX-Aurora TSUBASA [7]
uses VE as an accelerator that executes the functions offloaded
from TensorFlow that is running at x86. In this research, we
extended TensorFlow for SX-Aurora TSUBASA to support
LSTM. As is shown in Table VIII, CPU, GPU, and VE
have different characteristics. Both GPU and VE have better
memory bandwidth and peak performance than CPU. GPU
has better peak performance than VE; VE has better memory
bandwidth than GPU.

Figure 9 shows the structure of LSTM that is the main
component of RankNet. Figure 9 (a) depicts an LSTM cell.
It consists of multiple primitive operations such as matmul,
bias add, and other element-wise operations. LSTM has re-
current self connection, which can be represented as a loop
as shown in Fig. 9 (a). To avoid loop overhead, TensorFlow
has functionality to unroll the loop like Fig. 9 (b). We used
the same batch size 32 as used in the model evaluation.
In this case, the execution cost and internal parallelism of
each operation becomes small, which makes it difficult to
get better performance with an accelerator. Increasing the
batch size alleviates this situation, but scarifies generalization
performance.

Figure 10 shows the performance of training speed of Rank
Model, which is the main training part of RankNet. Bars with
label CPU, GPU, and VE show performance of the normal
configuration with loop unrolling. As it shows, accelerators
cannot improve the performance compared to CPU in this case.
This is because the overhead of calling these operations at an
accelerator becomes significant and cannot be amortized by
speed up of parallel execution of these operations.

Performance of VE is better than GPU. This is because
TensorFlow for SX-Aurora TSUBASA has functionality of
combining the operation offloading. That is, operations to be
offloaded are queued until the result is required; then multiple
operations are offloaded at a time. It reduced offloading
overhead, but the performance of VE is still lower than CPU.

To improve this situation, cuDNN library for GPU has the
functionality to offload unrolled LSTM cells as one operation
[5], [9]. Within this operation, multiple matmuls across the
timesteps are merged into a larger one to increase the paral-
lelism. By combining the small operations into one, offloading

+ + + +

• +
•

•

ht-1

Ct-1

ht

Ct

σ σ σtanh

tanh

✕
✕

+ + + +

• +
•

•σ σ σtanh

tanh

✕
✕

tt+1

Ct

ht

+ + + +

• +
•

•

ht+1

Ct+1

σ σ σtanh

tanh

✕
✕

...

(a) Recurrent Neural Networks with loops (b) Unrolled recurrent neural network

Ct htLSTM Cell State LSTM Output

Zi,t Xi,t+1 Zi,t Xi,t+1 Zi,t+1 Xi,t+2

Zi,t Xi,t+1 RankNet Input: Rank Z, Race Status X

(a) Recurrent Neural Networks with
loops

+ + + +

• +
•

•

ht-1

Ct-1

ht

Ct

σ σ σtanh

tanh

✕
✕

+ + + +

• +
•

•σ σ σtanh

tanh

✕
✕

tt+1

Ct

ht

+ + + +

• +
•

•

ht+1

Ct+1

σ σ σtanh

tanh

✕
✕

...

(a) Recurrent Neural Networks with loops (b) Unrolled recurrent neural network

Ct htLSTM Cell State LSTM Output

Zi,t Xi,t+1 Zi,t Xi,t+1 Zi,t+1 Xi,t+2

Zi,t Xi,t+1 RankNet Input: Rank Z, Race Status X

(b) Unrolled recurrent neural network

+ + + +

• +
•

•

ht-1

Ct-1

ht

Ct

σ σ σtanh

tanh

✕
✕

+ + + +

• +
•

•σ σ σtanh

tanh

✕
✕

tt+1

Ct

ht

+ + + +

• +
•

•

ht+1

Ct+1

σ σ σtanh

tanh

✕
✕

...

(a) Recurrent Neural Networks with loops (b) Unrolled recurrent neural network

Ct htLSTM Cell State LSTM Output

Zi,t Xi,t+1 Zi,t Xi,t+1 Zi,t+1 Xi,t+2

Zi,t Xi,t+1 RankNet Input: Rank Z, Race Status X

Fig. 9: LSTM cell has recurrent self-connection, which can be represented as a loop as shown in (a). To avoid loop overhead, TensorFlow
has functionality to unroll the loop like (b).

overhead can be reduced. We added the same functionality
to TensorFlow for SX-Aurora TSUBASA in a library called
vednn. They are shown as GPU (cuDNN) and VE (vednn) in
Figure 10.

In both cases, the performance of training speed has im-
proved and is better than CPU. The performance of VE is still
better than GPU. This is because the remaining offloading
overhead is smaller in the case of VE with combined of-
floading, and memory bandwidth is more important than peak
performance in this size of the computation.

CPU GPU VE GPU
(cuDNN)

VE
(vednn)

0

200

400

600

800

516.7

853.5

693.7

245.2 202.8

Tr
ai

ni
ng

Ti
m

e
(µ

s/
sa

m
pl

e)

Fig. 10: Training time/sample (µs). Due to the reduced offloading
cost and higher memory bandwidth, the VE outperforms the GPU.

V. RELATED WORK

Forecasting in general: Decomposition to address un-
certainty. Decomposition and ensemble are often used to
separate the uncertainty signals from the normal patterns and
model them independently. [20] utilizes the Empirical Mode
Decomposition [16] algorithm to decompose the load demand
data into several intrinsic mode functions and one residue,
then models each of them separately by a deep belief network,
finally forecast by the ensemble of the sub-models. Another
type of decomposition occurs in local and global modeling.
ES-RNN [24], winner of M4 forecasting competition [4],
hybrids exponential smoothing to capture non-stationary trends
per series, learns global effects by RNN, and ensembles the
outputs finally. In this work, based on the understanding of the
cause-effects of the problem, we decompose the uncertainty by
modeling the causal factors and the target series separately.

Modeling extreme events. Extreme events [17] are featured
with the rare occurrence, difficult to model, and their pre-
diction is probabilistic. Autoencoder shows improved results

in capturing complex time-series dynamics during extreme
events, such as [18] for uber riding forecasting and [31] which
decomposes normal traffic and accidents for traffic forecasting.
[12] proposes to use a memory network with attention to
capture the extreme events pattern and a novel loss function
based on extreme value theory. We have classified the extreme
events in car racing with different categories in our work, and
modeled the more predictable pit stops in normal laps by MLP
with probabilistic output. Further exploring autoencoder and
memory network can be one of our future works.

Express uncertainty in the model. [13] first proposed to
model uncertainty in deep neural networks by using dropout
as a Bayesian approximation. [31] followed this idea and
successfully applied it to large-scale time series anomaly
detection at Uber. Our work follows the idea in [22] that
parameterizes a fixed distribution with the output of a neural
network. [28] adopts the same idea and apply it to weather
forecasting.

Car racing forecasting: Simulation-based method: Racing
simulation is widely used in motorsports analysis [14] [10]
[1]. A racing simulator models different factors that impact lap
time during the race via equations with fine-tuned parameters.
[14] presents a simulator that reduces the race time calculation
error to around one second for the 2017 Formula 1 Etihad
Airways Abu Dhabi Grand Prix. But the pit stop information
for every driver is required as input.

Machine learning-based method: [25] [11] is a series of
work forecasting the decision-to-decision loss in rank posi-
tion for each racer in NASCAR. [25] describes how they
leveraged expert knowledge of the domain to produce a real-
time decision system for tire changes within a NASCAR race.
They chose to model the change in rank position and avoid
predicting the rank position directly since it is complicated
due to its dependency on the timing of other racers’ pit stops.
Our work aims to build forecasting that relies less on domain
knowledge and focuses on investigating the pit stop model.

VI. CONCLUSION

This paper investigates deep learning to solve the challeng-
ing problem of modeling time-series data with high uncer-
tainty and extreme events. With the IndyCar racing data, we

find that the model decomposition based on the cause-and-
effect relationship is critical to improving the rank position
forecasting performance. We compare several state-of-the-art
deep forecasting models: DeepAR, DeepState, DeepFactors,
and N-BEATS. The results show that they cannot perform well
on the global dependency structure. Therefore, we propose
RankNet, a combination of the encoder-decoder network and
a separate MLP network capable of delivering probabilistic
forecasting, to model the pit stop events and rank position
in car racing. In this way, we incorporate domain knowledge
to enhance the deep learning method. Our proposed model
achieves significantly better accuracy than baseline models in
the rank position forecasting task. The advantages of needing
fewer feature engineering efforts and providing probabilistic
forecasting have enabled us with refined racing strategy opti-
mizations.

There are several future directions for this work. Since
there are a few related work, racing car data sets and their
performance evaluation in this paper can contribute to the
autonomous racing challenge for automobile, robotics, and
automation forecasting. Car racing is an event with observed
data changing in real-time and a major challenge lies in the
lack of training data on extreme events. Applying transfer
learning in this problem could be one important direction of
future work.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge support from the NEC Grant
for High-Performance Systems and Analytics for Big Data,
NSF Grant 1918626 for Expedition: Global Pervasive Com-
putational Epidemiology, and NSF Grant 1835631 for CINES:
A Scalable Cyberinfrastructure for Sustained Innovation in
Network Engineering and Science. We also appreciate the
system support offered by FutureSystems.

REFERENCES

[1] Building a race simulator. https://f1metrics.wordpress.com/2014/10/03/
building-a-race-simulator/. visited on 04/15/2020.

[2] IndyCar Dataset. https://racetools.com/logfiles/IndyCar/. visited on
04/15/2020.

[3] IndyCar Understanding-The-Sport. https://www.indycar.com/Fan-Info/
INDYCAR-101/Understanding-The-Sport/Timing-and-Scoring. visited
on 04/15/2020.

[4] M4 Competition. https://forecasters.org/resources/time-series-data/
m4-competition/. visited on 04/15/2020.

[5] Optimizing Recurrent Neural Networks in cuDNN 5.
https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-
cudnn-5/.

[6] PitStop. https://en.wikipedia.org/wiki/Pit stop. visited on 04/15/2020.
[7] TensorFlow for SX-Aurora TSUBASA. https://github.com/sx-aurora-

dev/tensorflow.
[8] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert,

J. Gasthaus, T. Januschowski, D. C. Maddix, S. Rangapuram, D. Salinas,
J. Schulz, L. Stella, A. C. Türkmen, and Y. Wang. GluonTS: probabilistic
time series models in python. arXiv:1906.05264, June 2019.

[9] J. Appleyard, T. Kocisky, and P. Blunsom. Optimizing performance of
recurrent neural networks on gpus. arXiv preprint arXiv:1604.01946,
2016.

[10] J. Bekker and W. Lotz. Planning formula one race strategies using
discrete-event simulation. Journal of the Operational Research Society,
60(7):952–961, 2009.

[11] C. L. W. Choo. Real-time decision making in motorsports: analytics for
improving professional car race strategy. PhD Thesis, Massachusetts
Institute of Technology, 2015.

[12] D. Ding, M. Zhang, X. Pan, M. Yang, and X. He. Modeling extreme
events in time series prediction. In Proceedings of the 25th ACM
SIGKDD, pages 1114–1122, New York, NY, USA, 2019.

[13] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international
conference on machine learning, pages 1050–1059, 2016.

[14] A. Heilmeier, M. Graf, and M. Lienkamp. A race simulation for strategy
decisions in circuit motorsports. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pages 2986–2993, Nov.
2018.

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[16] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-
C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proceedings of the Royal Society of London. Series A:
mathematical, physical and engineering sciences, 454(1971):903–995,
1998.

[17] H. Kantz, E. G. Altmann, S. Hallerberg, D. Holstein, and A. Riegert.
Dynamical interpretation of extreme events: predictability and predic-
tions. In Extreme Events in Nature and Society, pages 69–93. Springer,
Berlin, Heidelberg, 2006.

[18] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl. Time-series extreme event
forecasting with neural networks at uber. In International Conference
on Machine Learning, volume 34, pages 1–5, 2017.

[19] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio. N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting.
In Proceedings of International Conference on Learning Representa-
tions(ICLR), 2020.

[20] X. Qiu, Y. Ren, P. N. Suganthan, and G. A. J. Amaratunga. Empirical
Mode Decomposition based ensemble deep learning for load demand
time series forecasting. Applied Soft Computing, 54:246–255, May 2017.

[21] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski. Deep state space models for time series forecasting.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 7785–7794. Curran Associates, Inc., 2018.

[22] D. Salinas, V. Flunkert, and J. Gasthaus. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. arXiv:1704.04110
[cs, stat], Apr. 2017.

[23] M. W. Seeger, D. Salinas, and V. Flunkert. Bayesian intermittent demand
forecasting for large inventories. In Advances in Neural Information
Processing Systems, pages 4646–4654, 2016.

[24] S. Smyl. A hybrid method of exponential smoothing and recurrent
neural networks for time series forecasting. International Journal of
Forecasting, 36(1):75–85, Jan. 2020.

[25] T. Tulabandhula. Interactions between learning and decision making.
PhD Thesis, Massachusetts Institute of Technology, 2014.

[26] T. Tulabandhula and C. Rudin. Tire changes, fresh air, and yellow
flags: challenges in predictive analytics for professional racing. Big
data, 2(2):97–112, 2014.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems 30, pages 5998–6008. Curran
Associates, Inc., 2017.

[28] B. Wang, J. Lu, Z. Yan, H. Luo, T. Li, Y. Zheng, and G. Zhang. Deep
uncertainty quantification: A machine learning approach for weather
forecasting. In Proceedings of the 25th ACM SIGKDD, pages 2087–
2095, 2019.

[29] Y. Wang, A. Smola, D. C. Maddix, J. Gasthaus, D. Foster, and
T. Januschowski. Deep factors for forecasting. arXiv:1905.12417 [cs,
stat], May 2019.

[30] Y. Yamada and S. Momose. Vector engine processor of NEC’s brand-
new supercomputer SX-Aurora TSUBASA. In 30th Symposium on High
Performance Chips, pages 19–21, 2018.

[31] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu. Deep learning: A
generic approach for extreme condition traffic forecasting. In Proceed-
ings of the 2017 SIAM international Conference on Data Mining, pages
777–785. SIAM, 2017.

