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Abstract—The convergence of HPC and data intensive method-
ologies provide a promising approach to major performance
improvements. This paper provides a general description of
the interaction between traditional HPC and ML approaches
and motivates the ”Learning Everywhere” paradigm for HPC.
We introduce the concept of ”effective performance” that one
can achieve by combining learning methodologies with simu-
lation based approaches, and distinguish between traditional
performance as measured by benchmark scores. To support the
promise of integrating HPC and learning methods, this paper
examines specific examples and opportunities across a series of
domains. It concludes with a series of open computer science and
cyberinfrastructure questions and challenges that the Learning
Everywhere paradigm presents.

I. INTRODUCTION

This paper describes opportunities at the interface between

large-scale simulations, experiment design and control, ma-

chine learning (ML including deep learning DL) and High-

Performance Computing. We describe both the current status

and possible research issues in allowing machine learning

to pervasively enhance computational science. How should

one do this and where is it valuable? We focus on research

challenges on computing for science and engineering (as

opposed to commercial) use cases for both big data and big

simulation problems. More details including further citations

can be found at [1].

The convergence of HPC and data-intensive methodolo-

gies [2] provide a promising approach to major performance

improvements. Traditional HPC simulations are reaching the

limits of original progress. The end of Dennard scaling of

transistor power usage and the end of Moores Law as origi-

nally formulated has yielded fundamentally different processor

architectures. The architectures continue to evolve, resulting

in highly costly if not damaging churn in scientific codes that

need to be finely tuned to extract the last iota of parallelism

and performance.

In domain sciences such as biomolecular sciences, advances

in statistical algorithms and runtime systems have enabled

extreme scale ensemble based applications [3] to overcome

limitations of traditional monolithic simulations. However, in

spite of several orders of magnitude improvement in efficiency

from these adaptive ensemble algorithms, the complexity

of phase space and dynamics for modest physical systems,

require additional orders of magnitude improvements and

performance gains.

In many application domains, integrating traditional HPC

approaches with machine learning methods arguably holds the

greatest promise towards overcoming these barriers. The need

for performance increase underlies the international efforts

behind the exascale supercomputing initiatives and we believe

that integration of ML into large scale computations (for both

simulations and analytics) is a very promising way to get even

large performance gains. Further, it can enable paradigms such

as control or steering and provide a fundamental approach

to coarse-graining which is a difficult but essential aspect of

the many multi-scale application areas. Papers at two recent

workshops BDEC2 [4] and NeurIPS [5] confirm our point

of view and our approach is synergistic with the BDEC2

process with its emphasis on new application requirements

and their implications for future scientific computing software

platforms. We would like to distinguish between traditional

performance measured by operations per second or benchmark

scores and the effective performance that one gets by combin-

ing learning with simulation and gives increased performance

as seen by the user without changing the traditional system

characteristics. This is of particular interest in cases where

there is a tight coupling between the learning and simulation

components (as outlined below for MLforHPC). The need

for significant enhancement in the effective performance of

HPC motivates the introduction of a new paradigm in HPC:

Learning Everywhere!

Different Interfaces of ML and HPC: We have identified

[6], [4] several important distinctly different links between ma-

chine learning (ML) and HPC. We define two broad categories:

HPCforML and MLforHPC,

• HPCforML: Using HPC to execute and enhance ML

performance, or using HPC simulations to train ML

algorithms (theory guided machine learning), which are

then used to understand experimental data or simulations.
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• MLforHPC: Using ML to enhance HPC applications and

systems

This categorization is related to Jeff Dean’s ”Machine

Learning for Systems and Systems for Machine Learning” [7]

and Satoshi Matsuoka’s convergence of AI and HPC [8].We

further subdivide HPCforML as

• HPCrunsML: Using HPC to execute ML with high

performance

• SimulationTrainedML: Using HPC simulations to train

ML algorithms, which are then used to understand exper-

imental data or simulations.

We also subdivide MLforHPC as

• MLautotuning: Using ML to configure (autotune) ML or

HPC simulations. Already, autotuning with systems like

ATLAS is hugely successful and gives an initial view

of MLautotuning. As well as choosing block sizes to

improve cache use and vectorization, MLautotuning can

also be used for simulation mesh sizes [9] and in big data

problems for configuring databases and complex systems

like Hadoop and Spark [10], [11].

• MLafterHPC: ML analyzing results of HPC as in trajec-

tory analysis and structure identification in biomolecular

simulations

• MLaroundHPC: Using ML to learn from simulations

and produce learned surrogates for the simulations. The

same ML wrapper can also learn configurations as well as

results. This differs from SimulationTrainedML as there

typically a learnt network is used to redirect observation

whereas in MLaroundHPC we are using the ML to

improve the HPC performance.

• MLControl: Using simulations (with HPC) in control

of experiments and in objective driven computational

campaigns [12]. Here the simulation surrogates are very

valuable to allow real-time predictions.

All 6 topics above are important and pose many research

issues in computer science and cyberinfrastructure, directly in

application domains and in the integration of technology with

applications. However, in this paper, we focus on topics in

MLforHPC, with close coupling between ML, simulations, and

HPC. We involve applications as a driver for the requirements

and evaluation of the computer science and infrastructure. In

researching MLaroundHPC we will consider ML wrappers

for either HPC simulations or complex ML algorithms imple-

mented with HPC. Our focus is on how to increase effective

performance with the learning everywhere principle and how

to build efficient learning everywhere parallel systems.

One can view the use of ML learned surrogates as a per-

formance boost that can lead to huge speedups as calculation

of a prediction from a trained network, can be many orders

of magnitude faster than full execution of the simulation as

shown in section III-D. One can reach Exa or even Zetta scale

equivalent performance for simulations with existing hardware

systems. These high-performance surrogates are valuable in

education and control scenarios by just speeding existing

simulations. Simple examples are the use of a surrogate to

represent a chemistry potential or a larger grain size to solve

the diffusion equation underlying cellular and tissue level

simulations. Development of systematic ML-based coarse-

graining techniques in both socio-technical simulations and

nano-bio(cell)- tissue layering arises as an important area of

research. In general, Domain-specific expertise will be needed

to understand the needed accuracy and the number of training

simulation runs needed.

There are many groups working in MLaroundHPC but

most of the work is just starting and not built around a

systematic study of research issues as we propose. There is

some deep work in building reduced dimension models to use

in control scenarios [13]. We look at three distinct important

areas: Networked systems with socio-technical simulations,

multiscale cell and tissue simulations and at a finer scale

biomolecular and nanoscale molecular systems.

We note that biomolecular and biocomplexity areas which

represent 40% of the HPC cycles used on NSF computational

resources and so this is an area that is particularly ready

and valuable. Molecular sciences has had several successful

examples of using ML for autotuning and ML for analyz-

ing the output of HPC simulation data. Several fields have

made progress in using MLaroundHPC, e.g., Cosmoflow and

CosmoGAN [14] are amongst the better known projects; and

the Materials community is actively exploring the uptake of

MLControl for the design of materials [4].

This paper does not cover development of new ML al-

gorithms but rather the advancing the understanding of ML,

including Deep Learning (DL) in support of MLaroundHPC.

Of course, the usage experience is likely to suggest new ML

approaches of value outside the MLaroundHPC arena. If one

is to use an ML to replace a simulation, then an accuracy

estimate is essential and as discussed in III-B there is a need to

build on initial work on UQ (Uncertainty Quantification) with

ML [15] such as that using dropout regularization to build

ensembles for UQ. There are more sophisticated Bayesian

methods to investigate. The research must also address er-

godicity, viz., have we learned across the full phase space

of initial values. Here methods taken from Monte-Carlo arena

could be useful as reliable integration over a domain is related

to reliable estimates of values defined across a domain. Further

much of our learning is for analytic functions whereas much

of the existing DL experience is for discrete-valued classifiers

of commercial importance.

Section III discusses cyberinfrastructure and computer sci-

ence questions, section III-B covers uncertainty quantification

for learnt results while section III-C the infrastructure require-

ments needed to implement MLforHPC. Section III-D gives a

general performance analysis method and applies to current

cases, Section III-E covers new opportunities and research

issues.

II. SCIENCE EXEMPLARS

A. Machine learning for Networked Systems

In this section we describe a hybrid method that fuses

machine learning and mechanistic models to overcome the



challenges posed by scenarios where data is sparse and

knowledge of underlying mechanism is inadequate. Across

domains, the two approaches have been compared [16]. Ma-

chine learning approach usually needs a large amount of

observation data for training, and does not explicitly account

for mechanisms that govern the the complex phenomenon.

On the other hand, mechanistic models (like agent-based

models) result from a bottom-up approach; but they tend to

have too many parameters, are compute intensive and hard to

calibrate. In recent years, there have been several efforts to

study physical processes under the umbrella of theory-guided

data science (TGDS), with focus on artificial neural networks

(ANN) as the primary learning tool. [17] provides a survey

of these methods and their application to hydrology, climate

science, turbulence modeling, etc. where the underlying theory

can be used to reduce the variance in model parameters by

introducing constraints or priors in the model space.

Here we consider a particular class of mechanistic models

- network dynamical systems, which have been applied in

diverse domains such as epidemiology and computational

social science. A network dynamical system is composed of

a network where nodes of the network are agents (repre-

senting population, computers, etc.) and the edges capture

the interactions between them. A popular example of such

systems is the SEIR model of disease spread in a social

network [18]. The complexity of the dynamics in such a

network, due to individual level heterogeneity and interactions,

makes it difficult to train a machine learning model that

can be generalized to patterns not yet presented in historical

data. Completely data driven models cannot discover higher

resolution details (e.g. county level incidence) from lower

resolution ground truth data (e.g. state level incidence).

Learning from observational and simulation data: Data

sparsity is often a challenge for applying machine learning,

especially deep learning methods to forecasting problems in

socio-technical systems. One example of such problems is

to predict weekly incidence in future weeks in an influenza

epidemic. In such socio-technical systems, we usually have

only limited observational data, e.g. weekly incidence number

reported to the Centers for Disease Control and Prevention

(CDC). Such data is of low spatial temporal resolution (weekly

at state level), not real time (at least one week delay), incom-

plete (reported cases are only a small fraction of actual ones),

and noisy (adjusted several times after being published), thus

necessitating a hybrid framework for forecasting by learning

from observational and simulation data.

Observations need to be augmented with existing domain

knowledge and behavior encapsulated in the agent-based

model to inform the learning algorithm. In such hybrid

framework, the network dynamical system is used to guide

the learning algorithm so that it conforms to the principles

(consistency). At the same time, the learning algorithm will

facilitate model selection in a principled manner. Moreover,

the synthetic data goes beyond the observation data, thus

helps voiding overfitting and makes the learned model capable

of processing patterns unseen in the observation data (gen-

eralizability). When the dynamical system is more detailed

(e.g. individual level) than the observation data, the hybrid

framework allows detailed forecasting (high resolution).

Epidemic Forecasting: Simulation trained machine learn-

ing methods can be used for epidemic forecasting. An ex-

ample of such a framework is DEFSI (Deep Learning Based

Epidemic Forecasting with Synthetic Information) proposed

in [19]. It consists of (i) a model configuration module

that estimates a distribution for each parameter in an agent

based epidemic model based on coarse surveillance data; (ii)

simulation-geenrated synthetic training data module which

generates high-resolution training data by running HPC sim-

ulations parameterized from distributions estimated in the

previous module; (iii) a two-branch deep neural network

trained on the synthetic training dataset and used to make

details forecasts with coarse surveillance data as inputs.

Experimental results show that DEFSI performs comparably

or better than the other methods for state level forecasting; and

it outperforms the EpiFast method for county level forecasting.

See Ref. [1] and citations therein for details.

B. ML for Virtual Tissue and Cellular Simulations

1) Virtual Tissue Models: Virtual Tissue (VT) simulations

[20] are mechanism-based multiscale spatial simulations of

living tissues that address questions about development, main-

tenance, damage and repair. They also find application in the

design of tissues (tissue engineering) and the development

of medical therapies, especially personalized therapies. VT

simulations are computationally challenging for a number of

reasons: 1) VT simulations are agent-based, with the core

agent often representing biological cells. The number of cells

in a real tissue is often of the order of 108 or more. 2) Agents

are often hierarchical, with agents composed of multiple agents

at smaller scales. 3) Agents interact strongly with each other,

often over significant ranges [21]. 3) Individual agents typi-

cally contain complex sub models that control their properties

and behaviors. 4) Materials properties may be complex, like

the shear thickening or thinning or swelling or contraction of

fiber networks. 5) Modeling transport and diffusion is compute

intensive. 6) Models are typically stochastic, so predictivity

requires many replicas. 7) Simulations involve uncertainty

both in model parameters and in model structure. 8) Bi-

ological and medical time-series data are often qualitative,

semi-quantitative or differential, making their use in classical

optimization difficult. 9) VT models often produce movies of

configurations over time. 10) Finally, simulating populations

can add several orders of magnitude to the computational

challenge. It is possible that ML techniques can be used to

short circuit implementations at and between scales.

2) Virtual Tissue Modelling and AI + MLandHPC: AI can

directly benefit VT applications in a number of ways:

1) Short-circuiting: The replacement of computationally

costly modules with learned analogues.

2) Parameter fitting in high dimensional parameter spaces.

3) Treating stochasticity in results as information rather

than noise.



4) Prediction of bifurcations in models.

5) Design of maximally discriminatory experiments – pre-

dict the parameter sets by which two models can be

differentiated.

6) Run time backwards, to determine initial conditions that

lead to observed endpoints.

7) The elimination of short time scales, e.g., short-circuit

the calculations of advection-diffusion.

8) Generating additional spatial data sets from experimental

images.

Representative prior work by Karniadakis [13], Kevrekidis

[22] and Nemenman [23] shows that neural networks can

reproduce the temporal behaviors of biochemical regulatory

and signaling networks. Ref. [24] has shown that networks can

learn nonlinear biomechanics simulations of the aorta–being

able to predict the stress and strain distribution in the human

aorta from the morphology observable with MRI or CT.

C. Machine Learning and Molecular Simulations

1) Nanoscale simulation: Despite the employment of the

optimal parallelization techniques suited for the size and

complexity of the system, nanoscale simulations remain time

consuming. In research settings, simulations can take up to

several days and it is often desirable to foresee expected over-

all trends in key quantities; for example, how does the contact

density vary as a function of ion concentration in nanoscale

confinement or how the peak positions of the pair correlation

functions characterizing nanoparticle assembly evolve as the

environmental parameters are tuned. Given the dramatic rise

in ML and HPC technologies, it is not the question of if, but

when, ML can be integrated with HPC to enhance nanoscale

simulation methods. Recent years have seen a surge in the

use of ML to accelerate material simulation techniques: ML

has been used to predict parameters, generate configurations

in material simulations, and classify material properties (see

Ref [1] and citations therein). At this time, it is critical to

understand and develop the software frameworks to build ML

layers around HPC to 1) enhance simulation performance 2)

enable real-time and anytime engagement, and 3) broaden the

applicability of simulations for both research and education

(in-classroom) usage.

In the context of nanoscale simulation, an initial set of

applications for the MLaroundHPC framework can be the

prediction of the structure or correlation functions (outputs)

characterizing the nanoscale system over a broad range of

experimental control parameters (inputs). MLaroundHPC can

enable the following outcomes:

1) Learn pre-identified critical features associated with the

simulation output.

2) Generate accurate predictions for un-simulated state-

points (by entirely bypassing simulations).

3) Exhibit auto-tunability (with new simulation runs, the

ML layer gets better at making predictions).

4) Enable real-time, anytime, and anywhere access to sim-

ulation results (particularly important for education use).

5) No run is wasted. Training needs both successful and

unsuccessful runs.

To illustrate these outcomes, we discuss nanoscale simula-

tions aimed at the computation of the structure of ions confined

by surfaces that are nanometers apart which has been the focus

of recent experiments and computational studies (see Ref [1]

and citations therein). Typically, the entire ionic distribution

averaged over sufficient number of independent samples gen-

erated during the simulation is a quantity of interest. However,

in many important cases, average values of contact density

or center density directly relate to important experimentally-

measured quantities such as the osmotic pressure [25]. Further,

often it is useful to visualize expected trends in the behavior

of contact or mid-point density as a function of solution

conditions or ionic attributes, before running simulations to

explore specific system conditions. It is thus desirable that a

“smart” simulation framework provide rapid estimates of these

critical output features with high accuracy. MLaroundHPC can

enable precisely this as we recently showed that an artificial

neural network successfully learns from completed simulation

results the desired features associated with the output ionic

density profiles to rapidly generate predictions for contact,

peak, and center densities in excellent agreement with the

results from explicit simulations [26].

2) Biomolecular simulations: The use of ML and in par-

ticular DL approaches for biomolecular simulations [27] lags

behind other areas such as nano-science and materials science

[28]. This might be partly due to the difficulty to account

for large heterogeneous systems with important interactions

at short and long length scales. But it might also indicate

that the commonly used classical empirical force fields are

surprisingly successful [29] and it is not easy to outperform

them at this level of approximation. Therefore, one primary

direction of research in this area is to improve the accuracy of

the simulation while maintaining the performance of empirical

energy functions.

One promising approach is based on work by Behler and

Parrinello [30] who devised a NN-based potential that was

trained on quantum mechanical DFT energies; their key in-

sight was to represent the total energy as a sum of atomic

contributions and represent the chemical environment around

each atom by an identically structured NN, which takes

as input appropriate symmetry functions that are rotation

and translation invariant as well as invariant to exchange of

atoms while correctly reflecting the local environment that

determines the energy [31]. Based on this work, Gastegger

et al. [32] used ML to accelerate ab-initio MD (AIMD) to

compute accurate IR spectra for organic molecules including

the biological Ala+3 tripeptide in the gas phase. Interestingly,

the ML model was able to reproduce anharmonicities and

incorporate proton transfer reactions between different Ala+3
tautomers without having been explicit trained on such a

chemical event, highlighting the promise of such an approach

to incorporate a wide range of physically relevant effects with

the right training data. The ML model was >1000 faster

than the traditional evaluation of the underlying quantum



mechanical physical equations.

Roitberg et al. [33] trained a NN on QM DFT calculations,

based on modified Behler-Parrinello symmetry functions. The

resulting ANI-1 model was shown to be chemically accurate,

transferrable, with a performance similar to a classical force

field, thus enabling ab-initio molecular dynamics (AIMD) at a

fraction of the cost of ”true” DFT AIMD. Extensions of their

work with an active learning (AL) approach demonstrated that

proteins in an explicit water environment can be simulated

with a NN potential at DFT accuracy [34]. The AL approach

reduced the amount of required training data to 10% of

the original model [34] by iteratively adding training data

calculations for regions of chemical space where the current

ML model could not make good predictions. Using transfer

learning, the ANI-1 potential was also extended to predict

energies at the highest level of quantum chemistry calculations

(coupled cluster CCSD(T)), with speedups in the billion.

In general the focus has been on achieving DFT-level

accuracy because NN potentials are not cheaper to evaluate

than most classical empirical potentials. However, replacing

solvent-solvent and solvent-solute interactions, which typically

make up 80%-90% of the computational effort in a classical

all-atom, explicit solvent simulation, with a NN potential

promises large performance gains at a fraction of the cost

of traditional implicit solvent models and with an accuracy

comparable to the explicit simulations [35], as also discussed

above in the case of electrolyte solutions. Furthermore, in-

clusion of polarization, which is expensive (factor 3-10 in

current classical polarizable force fields [36]) but of great

interest when studying the interaction of multivalent ions with

biomolecules might be easily achievable with appropriately

trained ML potentials.

III. INTEGRATING ML AND HPC: BACKGROUND AND

OPPORTUNITIES

A primary contribution of this paper is in the categorization,

description and examples of the different ways in which ML

can enhance HPC (MLforHPC). Before we expound upon

MLforHPC and open research issues, we provide a a summary

status of HPC for ML (beyond the obvious and well-studied

use of GPUs for ML).

A. HPC for Machine Learning

There has been substantial community progress here with

the Industry supported MLPerf [37] machine learning bench-

mark activity and Ubers Horovod Open Source Distributed

Deep Learning Framework for TensorFlow [38]. We have stud-

ied different parallel patterns (kernels) of machine learning ap-

plications, looking in particular at Gibbs Sampling, Stochastic

Gradient Descent (SGD), Cyclic Coordinate Descent (CCD)

and K-means clustering [39]. These algorithms are fundamen-

tal for large-scale data analysis and cover several important

categories: Markov Chain Monte Carlo (MCMC), Gradient

Descent and Expectation and Maximization (EM). We show

that parallel iterative algorithms can be categorized into four

types of computation models (a) Locking, (b) Rotation, (c)

Allreduce, (d) Asynchronous, based on the synchronization

patterns and the effectiveness of the model parameter update.

A major challenge of scaling is owing to the fact that compu-

tation is irregular and the model size can be huge. At the

meantime, parallel workers need to synchronize the model

continually. By investigating collective vs. asynchronous meth-

ods of the model synchronization mechanisms, we discover

that optimized collective communication can improve the

model update speed, thus allowing the model to converge

faster. The performance improvement derives not only from

accelerated communication but also from reduced iteration

computation time as the model size may change during the

model convergence. To foster faster model convergence, we

need to design new collective communication abstractions.

We identify all 5 classes of data-intensive computation[2],

from pleasingly parallel to machine learning and simulations.

To re-design a modular software stack with native kernels

to effectively utilize scale-up servers for machine learning

and data analytics applications. We are investigating how

simulations and Big Data can use common programming

environments with a runtime based on a rich set of collectives

and libraries for a model-centric approach [40], [41].

Parallel Computing: We know that heterogeneity can

lead to difficulty in parallel computing. This is extreme for

MLaroundHPC as the ML learnt result can be huge factors

(105 in our initial example[26]) faster than simulated answers.

Further learning can be dynamic within a job and within

different runs of a given job. One can address by load

balancing the unlearnt and learnt separately but this can lead

to geometric issues as quite likely that ML learning works

more efficiently (for more potential simulations) in particular

regions of phase space.

B. Uncertainty Quantification for Deep Learning

An important aspect of the use of a learned ML model is

that one must learn not just the result of a simulation but

also the uncertainty of the prediction e.g. if the learned result

is valid enough to be used. This can be explained in the

sense of the bias-variance trade-off, which is based on the

decomposition of the expected error into two parts: variance

and bias. The variance part explains the uncertainty of the

model training process due to the randomness in the training

algorithms or the lack of representativeness of the training set.

A regularization scheme can reduce the variance so that the

model complexity is in control and can result in a smoother

model. However, the regularization approach comes at the cost

of an increased amount of bias, which is another term in

the expected error decomposition that explains the fitness of

the model—by regularizing the model the training algorithm

can do only a limited effort to minimize the training error.

On the contrary, an unregularized model with a higher model

complexity than necessary can also result in a minimal training

error, while it suffers from high variance.

Ideally, the bias-variance trade-off can be resolved to some

degree by averaging trained instances of an originally complex

model. Once these model instances are complex enough to fit



the training data set, we can use the averaged predictions as

the output of the model. However, averaging many different

model instances implies a practical difficulty that one has to

conduct multiple optimization tasks to secure a statistically

meaningful sample distribution of the predictions. Given the

assumption that the model might as well be a complex one

to minimize the bias component (e.g. a deep neural network),

the model averaging strategy is computationally challenging.

Dropout has been extensively used in deep learning as a

regularization technique [42], but recent researches revisit it

as an uncertainty quantification (UQ) tool [43]. The dropout

procedure can be seen as an efficient way to maintain a

pool of multiple network instances for the same optimization

task. It is an efficient ensemble technique as it applies a

randomly sampled Bernoulli mask to a layer-wise input unit,

thus exposing the optimization process to many differently

structured instances of the network.

A a set of differently thinned versions of the network can

form a sample distribution of predictions to be used as a

UQ metric. The dropout-based UQ scheme can provide an

opportunity for the MLaroundHPC simulation experiments.

As a data-driven model it is reasonable to assume that a

better ML surrogate can be found once the training routine

sees more examples generated from the simulation experiment.

However, creating more examples to train a better ML model

is a conflicting requirement as the purpose of training the ML

surrogate is to avoid such computation. The UQ scheme can

play a role here to provide the training routine with a way

to quantify the uncertainty in the prediction—once it is low

enough, the training routine might less likely need more data.

C. Machine Learning for HPC

Here we review the nature of the Machine Learning needed

for MLforHPC in different application domains. The Machine

Learning (ML) load depends on 1) Time interval between its

invocations, which will translate into the number of training

samples S and 2) size D of data set specifying each sample.

This size could be as large as the number of degrees of

freedom in simulation or could be (much) smaller if just a

few parameters are needed to define simulation. We note two

general issues

• There can very important data transfer and storage issues

in linking the Simulations and Machine Learning parts of

system. This could need carefully designed architectures

for both hardware and software.

• The Simulations and Machine Learning subsystems are

likely to require different node optimizations as in differ-

ent types and uses of accelerators.

D. Science Exemplar: Nanosimulations

In this subsection, using the example of Nanosimulations,

we show progress in all areas at the intersection of HPC and

ML are having an impact.

In each of two cases below, one is using scikit-learn,

Tensorflow and the Keras wrapper for Tensorflow, as the ML

subsystem. The papers [26], [9] are using ML to learn results

(ionic density at a given location) of a complete simulation

• D=5 with the five specifying features as confinement

length h, positive valency zp, negative valency zn, salt

concentration c, and the diameter of the ions d.

• S= 4805 which 70% of total 6864 runs with 30% of the

total runs used for testing.

In [9], one is not asking ML to predict a result as in [26],but

rather training an Artificial Neural Net (ANN) to ensure that

the simulation runs at its optimal speed (using for example,

the lowest allowable timestep dt and ”good” simulation control

parameters for high efficiency) while retaining the accuracy of

the final result (e.g. density profile of ions). For this particular

application, we could get away by dividing a 10 million time-

step run ( 10 nanoseconds that is a typical timescale to reach

equilibrium and get data in such systems) into 10 separate

runs.

• Input data size D= 6 (1 input uses 64 bits floats and 5

inputs use 32 bits integers - total 224 bits)

• Input number of samples (S) = 15640 (70% training 30%

test)

• Hidden layer 1 = 30

• Hidden layer 1 = 48

• Output variables = 3

Creation of the training dataset took = 64 cores * 80 hrs *

5400 simulation runs = 28160000 or 28 million CPU hours

on Indiana University’s BigRed2 GPU compute nodes. Each

run is 10 million steps long, and you use/learn/train ML every

1 million steps (so block size is a million), yielding 10 times

more samples than runs.

Generalizing this, the hardware needs will depend on how

often you block, to stop and train the network, and then either

on-the-fly or post-simulation, use that training to accelerate

simulation or evaluate structure respectively. Blocking every

timestep will not improve the training as typically, it won’t

produce a statistically independent data point to evaluate any

structure you desire. So you want to block at a timescale that

is at least greater than the autocorrelation time dc; this is, of

course, dependent on example you are looking at – and so

your blocking and learning will depend on the application. In

[26], it is small and dc is 3-5 dt; in glasses, it can be huge

as the viscosity is high; and in biomolecular simulations, it

will also depend on the level of coarse-graining and will be

different in fully atomistic or very coarse-grained systems.

The training effort will also depend on the input data size

D, and the complexity of the relationship you are trying to

learn which change the number of hidden layers and nodes

per layer. For example, suppose you are tracking a particle (a

side atom on a molecule in a typical nanoscale simulation),

in order to come up with a metric (e.g. distance between two

side atoms on different molecules) to track the diversity of

clusters of particles during the self-assembly process. This

comes from expectation that correlations between side atoms

may be critical to a macroscopic property (such as formation

of these particles into a FCC crystal). In this case your D is



huge, and your ML objectives may be looking for a deep

relationship, and you may have to invoke an ensemble of

ANN’s and this will change hardware needs.

Scaling of Effective Performance: An initial approach

to estimate speedup in a hybrid MLaroundHPC situation is

given in [26] for a nano simulation. One can estimate the

speedup in terms in terms of four times Tseq the sequential

execution time of simulation; Ttrain the time for the parallel

execution of simulation to give training data; Tlearn is the

time per sample to train the learning networkl; and Tlookup

is the inference time to predict the results of the simulation

by using the trained network. In the formula below, Nlookup

is the number of trained neural net inferences and Ntrain the

number of parallel simulations used in training.

EffectiveSpeedup S =
Tseq(Nlookup +Ntrain)

TlookupNlookup + (Ttrain + Tlearn)Ntrain

This formula reduces to the classic simple
Tseq

Ttrain
when there is

no machine learning and in the limit of large
Nlookup

Ntrain
becomes

Tseq

Tlookup
which can be huge!

There are many caveats and assumptions here. We are

considering a simple case where one runs the Ntrain sim-

ulations, followed by the learning and then all the Nlookup

inferences. Further we assume the training simulations are

useful results and not just overhead. We also have not properly

considered how to build in the likelihood that training, learning

and lookup phases are probably using different hardware

configurations with different node counts.

E. Opportunities and Research Issues

Research Issues: In addition to the six categories at the

interface of ML and HPC, the research issues we identify

reflect the multiple interdisciplinary activities linked in our

study of MLforHPC, including application domains described

in sections II-A, II-B, II-C1 and II-C2, as well as coarse

graining studied in our case for network science and nano-

bio areas.

We have identified the following research areas, which can

be categorized into Algorithms and Methods (1-5), Applied

Math (10), Software Systems (6,7), Performance Measurement

and Engineering (8,11).

1) Where can application domains use MLaroundHPC and

MLautotuning effectively and what science is enabled

by this

2) Which ML and DL approaches are most relevant and

how can they be set up to enable broad user-friendly

MLaroundHPC and MLautotuning in domain science

3) How can Uncertainty Quantification be enabled and

separately study ergodicity (bias) and accuracy issues?

4) Is there new area of algorithmic research focusing on

finding algorithms that can be most effectively learnt?

5) Is there a general multiscale approach using

MLaroundHPC.

6) What are appropriate systems frameworks for

MLaroundHPC and MLautotuning. For example,

should we wrap microservices invoked by a Function

as a Service environment? Where and how should we

enable learning systems? Is Dataflow useful?

7) The different characters of surrogate and real executions

produce system challenges as surrogate execution is

much faster and invokes distinct software and hardware.

This heterogeneity gives challenges for parallel com-

puting, workload management and resource scheduling

(heterogeneous and dynamic workflows). The implica-

tion for performance is briefly discussed in sections

III-A and III-D.

8) Scaling applications that are composed of multiple het-

erogeneous computational (execution) units, and have

distinct forms of parallelism that need balanced perfor-

mance. Consider a workload comprised of NL learn-

ing units, NS simulations units. The relative number

of learning units to simulation units will vary with

application and problem type. The relative values will

even vary over execution time of the application, as the

amount of data generated as a ratio of training data will

vary. This requires runtime systems that are capable of

real-time performance tuning and adaptive execution for

workloads comprised of multiple heterogeneous tasks.

9) The application of these ideas to statistical physics

problems may need different techniques than those used

in deterministic time evolutions.

10) The existing UQ frameworks based on the dropout tech-

nique can provide the level of certainty as a probabilistic

distribution in the prediction space. However, it does

not always mean that the quality of the distribution is

dependent on the quality/quantity of data. For example,

two models with different dropout rates can produce

different UQ results. If the goal of UQ in MLaroundHPC

context is to supply only an adequate amount of data,

we need a more reliable UQ method tailored for this

purpose rather than the dropout technique that tends to

manipulate the architecture of the model.

11) Application agnostic description and defintion of effec-

tive performance enhancement.

CONCLUSIONS

Broken Abstractions, New Abstractions: In traditional

HPC the prevailing orthodoxy is Faster is Better has driven

the quest for abstractions of hierarchical parallelism to speed-

ing up single units of works. Relinquishing the orthodoxy

based upon hierarchical (vertical) parallelism as the only

route to performance is necessary. The new paradigm in HPC

— Learning Everywhere, implies new performance, scaling

and execution approaches. In this new paradigm, multiple,

concurrent heterogeneous units of work replace single large

units of works, which thus require both hierarchical (vertical)

parallelism as well horizontal (many task) parallelism.
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